Markov Chain Monte Carlo

Xiaobao Wu

Tsinghua University xiaobao.wu1996@gmail.com

1 Markov Chain Monte Carlo

1.1 Stationary Distribution

The distribution at time t can be written as

$$\pi_t(x^*) = \sum_{x} \pi_{t-1}(x)k(x^*|x). \tag{1}$$

We want π_t and π_{t-1} are the same distributions, i.e., $\pi_t = \pi_{t-1} \triangleq \pi$. Thus, we have

$$\pi(x^*) = \sum_{x} \pi(x)k(x^*|x).$$
 (2)

But it is hard to find a kernel function satisfying this. Fortunately, one sufficient condition for ensuring π invariant is called detailed balance, defined as

$$\pi(x)k(x^*|x) = \pi(x^*)k(x|x^*)$$
(3)

With detailed balance, we have

$$\sum_{x} \pi(x)k(x^*|x) = \sum_{x} \pi(x^*)k(x|x^*) = \pi(x^*)\sum_{x} k(x|x^*) = \pi(x^*)$$
(4)

1.2 Metropolis-Hastings Algorithm

Algorithm 1: Metropolis-Hastings Algorithm

q is the proposal distribution. α is called acceptance rate. $k(x^*|x) = q(x^*|x) \min\{1, \frac{\pi(x^*)q(x|x^*)}{\pi(x)q(x^*|x)}\}$ is the transition probability.

$$\pi(x)k(x^*|x) = \pi(x)q(x^*|x)\min\{1, \frac{\pi(x^*)q(x|x^*)}{\pi(x)q(x^*|x)}\}$$
 (5)

$$= \min\{\pi(x)q(x^*|x), \pi(x^*q(x|x^*))\}$$
 (6)

$$= \pi(x^*)q(x|x^*)\min\{\frac{\pi(x)q(x^*|x)}{\pi(x^*)q(x|x^*)}, 1\}$$
 (7)

$$= \pi(x^*)k(x|x^*) \tag{8}$$

So, during the transition from $x^{(i)}$ to $x^{(i+1)}$, x still follows the distribution $\pi(x)$.

A popular choice for the proposal distribution is $q(x^*|x) = g(x^* - x)$ where g is a symmetric distribution, thus

$$x^* = x + \epsilon, \quad \epsilon \sim g.$$

Since $g(\epsilon) = g(-\epsilon)$, then $q(x^*|x) = q(x|x^*)$.

1.3 Gibbs Sampling

Gibbs Sampling is a special case of Metropolis-Hastings algorithm, which replaces $q(x|x^*)$ with $\pi(x|x^*_{\neg n})$. Thus, Gibbs sampling follows

$$\frac{\pi(x^*)q(x|x^*)}{\pi(x)q(x^*|x)} = \frac{\pi(x_n^*|x_{\neg n}^*)\pi(x_{\neg n}^*)\pi(x_n|x_{\neg n}^*)}{\pi(x_n|x_{\neg n})\pi(x_{\neg n}^*)\pi(x_n^*|x_{\neg n}^*)}$$
(9)

$$= \frac{\pi(x_n^*|x_{\neg n})\pi(x_{\neg n})\pi(x_n|x_{\neg n})}{\pi(x_n|x_{\neg n})\pi(x_{\neg n})\pi(x_n^*|x_{\neg n})}$$
(10)

$$=1 \tag{11}$$

So the acceptance rate of Gibbs sampling is 1.