Expectation Maximization and Variational Inference

Xiaobao Wu
Tsinghua University
xiaobao.wu1996@gmail.com

1 Expectation Maximization

The advantages of EM are

1. no need to tune parameters
2. easy to program
3. more elegant

We assume $p\left(z \mid x ; \theta^{\text {old }}\right)$ is tractable.

$$
\begin{equation*}
Q\left(\theta, \theta^{\text {old }}\right)=\mathbb{E}_{p\left(z \mid x, \theta^{\circ l d}\right)}[\log p(x, z)]=\sum_{z} p\left(z \mid x, \theta^{\text {old }}\right) \log p(x, z ; \theta) \tag{1}
\end{equation*}
$$

which can be seen as the expectation of the complete-data log likelihood.
E-step: compute $p\left(z \mid x ; \theta^{\text {old }}\right)$ given $\theta^{\text {old }}$.
M-step: $\theta^{\text {new }}=\operatorname{argmax}_{\theta} Q\left(\theta, \theta^{\text {old }}\right)$.

2 General EM

Also known as Varitional EM. We use $q(z)$ instead of $q(z \mid x, \theta)$.
E-step with θ fixed:

$$
\begin{equation*}
q(z)=\operatorname{argmax}_{q} \mathbb{E}_{q(z)}[\log p(x, z \mid \theta)] \tag{2}
\end{equation*}
$$

M-step with $q(z)$ fixed:

$$
\begin{equation*}
\theta^{\text {new }}=\operatorname{argmax}_{\theta} \mathbb{E}_{q(z)}[\log p(x, z \mid \theta)] \tag{3}
\end{equation*}
$$

3 Varitional Inference

There is a difference between $K(q \| p)$ and $K(p \| q)$.

$$
\begin{equation*}
K(q(z) \mid p(z))=\int q(z) \log \frac{p(z)}{q(z)} d z \tag{4}
\end{equation*}
$$

This KL divergence is large in the region where $p(z)$ is zero unless $q(z)$ is also zero. Thus, $q(z)$ tends to become small where $p(z)$ is small. Conversely, $q(z)$ is nonzero where $p(z)$ is nonzero.
If $p\left(z \mid x ; \theta^{\text {old }}\right)$ is intractable, we approximate the posterior probability using a simpler model, which comes to Varitional Inference methods.

The ELBO is

$$
\begin{align*}
\mathcal{L}(q(z)) & =\mathbb{E}_{q(z)}[\log p(x, z)-\log q(z)] \tag{5}\\
& =\mathbb{E}_{q(z)}[\log p(x, z)]-\int q(z) \log q(z) d z \tag{6}
\end{align*}
$$

Thus, traditional EM algorith is identical with Varitional Inference when $q(z)=q(z \mid x, \theta)$.

4 Stochastic Gradient Varitional Inference

We take $\operatorname{argmax} \mathcal{L}$ as an optimization problem. Here, $q_{\phi}(z)$ is same as $q_{\phi}(z \mid x)$.

$$
\begin{align*}
\nabla_{\phi} \mathcal{L}(\phi) & =\nabla_{\phi} \mathbb{E}_{q_{\phi}(z)}\left[\log p_{\theta}(x, z)-\log q_{\phi}(z)\right] \tag{7}\\
& =\mathbb{E}_{q_{\phi}(z)}\left[\left(\log p_{\theta}(x, z)-\log q_{\phi}(z)\right) \nabla_{\phi} \log q_{\phi}(z)\right] \tag{8}
\end{align*}
$$

We now can use MC to approximate it:

$$
\begin{equation*}
\nabla_{\phi} \mathcal{L}(\phi) \approx \frac{1}{L} \sum_{i=1}^{L}\left(\log p_{\theta}\left(x, z^{(l)}\right)-\log q_{\phi}\left(z^{(l)}\right)\right) \nabla_{\phi} \log q_{\phi}\left(z^{(l)}\right) \tag{9}
\end{equation*}
$$

Due to the property of \log function within $(0,1]$, the variance of $\left(\log p_{\theta}(x, z)-\right.$ $\left.\log q_{\phi}(z)\right) \nabla_{\phi} \log q_{\phi}(z)$ will be very large.
We can use reparametrization trick to alleviate it. There are also other methods like REINFORCE algorithm. We assume $z=g_{\phi}(\epsilon, x), \epsilon \sim p(\epsilon)$ and we have $q(z \mid x) d z=p(\epsilon) d \epsilon$

$$
\begin{align*}
\nabla_{\phi} \mathcal{L}(\phi) & \left.=\mathbb{E}_{p(\epsilon)}\left[\nabla_{\phi}\left(\log p_{\theta}(x, z)-\log q_{\phi}(z)\right)\right)\right] \tag{10}\\
& =\mathbb{E}_{p(\epsilon)}\left[\left(\nabla_{z}\left(\log p_{\theta}(x, z)-\log q_{\phi}(z)\right)\right) \nabla_{\phi} g_{\phi}(\epsilon, x)\right] \tag{11}\\
\nabla_{\phi} \mathcal{L}(\phi) & \left.\approx \frac{1}{L} \sum_{i=1}^{L} \nabla_{z}\left(\log p_{\theta}(x, z)-\log q_{\phi}(z)\right)\right) \nabla_{\phi} g_{\phi}\left(\epsilon^{(l)}, x\right) \tag{12}
\end{align*}
$$

where $z=g_{\phi}\left(\epsilon^{(l)}, x\right)$.
Update as

$$
\begin{equation*}
\phi^{(t+1)}=\phi^{(t)}+\lambda \nabla_{\phi}(\mathcal{L}(\phi)) \tag{13}
\end{equation*}
$$

